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ABSTRACT 

 

 A version of the discrete fractional Fourier transform (DFRFT) is developed with 

the objective of approximating the continuous fractional Fourier transform (FRFT). 

The eigendecomposition of the discrete Fourier transform (DFT) matrix F represents 

the main part of the work. First the McClellan-Parks nonorthogonal eigenvectors of F 

are generated analytically after deriving explicit expressions for the elements of those 

vectors. Second the Gram-Schmidt technique is applied to orthonormalize the 

eigenvectors in each eigensubspace individually. Third Hermite-like approximate 

eigenvectors are generated. Finally exact orthonormal eigenvectors as close as possible 

to the Hermite-like approximate eigenvectors are obtained by the orthogonal 

procrustes algorithm. The DFRFT has the properties of unitarity and angle additivity. 

It approximates its continuous counterpart as demonstrated by the simulation results. 

 

 

KEYWORDS:  Fractional fourier transform, hermite-gaussian functions, orthogonal 

procrustes algorithm, McClellan-parks eigenvectors. 

 

1. INTRODUCTION 

 

 A generalization of the Fourier transform has been recently proposed and termed 

the fractional Fourier transform (FRFT) in both the mathematics [1,2] and engineering 

literature [3-5]. Since two successive applications of the Fourier transform result in a 

time reversed version of the signal, the Fourier transform can be interpreted as a 

rotation by an angle 5.0  radians in the time-frequency plane. The fractional Fourier 

transform is a generalization of the Fourier transform because it can be interpreted as a 
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representation of the signal along an axis making an angle   with the time axis in the 

time-frequency plane.  

 Since the discrete Fourier transform (DFT) is the digital counterpart of the Fourier 

transform, current research activities are taking place in an attempt to develop a digital 

counterpart of the FRFT to be termed a discrete fractional Fourier transform (DFRFT). 

At present there is no definitive definition of such a generalization of the DFT. A 

legitimate definition of the DFRFT should have the properties of unitarity, angle 

additivity, reduction to the DFT when the angle of rotation   is 5.0  and 

approximation of its analog counterpart namely the FRFT. Although the first three 

requirements can be satisfied, the last one can only be approximated. Guided by this 

goal, a recent definition emerged for the DFRFT that will have eigenvectors that 

resemble samples of the Hermite-Gaussian functions which are the eigenfunctions of 

the FRFT [6-7]. 

 A fundamental step in the definition of a DFRFT is the eigendecomposition of the 

DFT matrix F. In their pioneering work, McClellan and Parks proved that for any 

order 5N , matrix F has only the 4 distinct eigenvalues  jj ,1,,1   and they 

determined their multiplicities [8]. Moreover they constructed a complete set of 

linearly independent – but nonorthogonal – eigenvectors. Dickinson and Steiglitz 

presented a technique for computing orthonormal eigenvectors of matrix F by a 

detailed analysis of a special matrix S that commutes with F [9]. They proved that if   

is a simple eigenvalue of S then its corresponding eigenvector will also be an 

eigenvector of F but with a different eigenvalue. Since matrix S is real and symmetric, 

it has a complete set of real independent eigenvectors that form a basis of the N-

dimensional space NR . Those eigenvectors will be orthogonal if the eigenvalues of S 

are simple. Based on extensive numerical evidence as well as some analytical results, 

Dickinson and Steiglitz conjectured that the eigenvalues of S are simple except when 

N is divisible by 4. In the latter case they proved that S has two zero eigenvalues and 

they also conjectured that this is the only multiplicity which ever occurs.  

 Since meeting the requirement of angle additivity of the DFRFT necessitates having 

orthonormal eigenvectors of matrix F, any development of a DFRFT should start by 
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deciding on a way for getting a complete orthonormal set of eigenvectors of F. In his 

recent development, Pei et. al. [6] adopted the eigenvectors of the special matrix S. 

Next they generated samples of the Hermite-Gaussian functions to get approximate 

eigenvectors of F. Finally they projected them on the eigensubspaces of F in order to 

get Hermite-like orthonormal eigenvectors of F to be used as a basis for defining a 

DFRFT that approximates its continuous counterpart. 

 In an alternative development, Pei et. al. computed Hermite-like orthonormal 

eigenvectors of F consecutively by solving a series of constrained minimization 

problems using the Lagrange  multipliers method [7]. At each stage, the minimization 

criterion is the squared norm of the error vector between the exact eigenvector and the 

approximate eigenvector obtained by sampling the Hermite Gaussian function. Two 

sets of linear constraints are imposed: the first set is the defining equation of an exact 

eigenvector and the second set is the requirement that the eigenvector to be evaluated 

be orthogonal to those evaluated in the previous stages. The QR matrix decomposition 

technique is applied to the matrix of coefficients of the linear constraints in order to 

single out a set of linearly independent  constraints. The final expression for the exact  

eigenvector involves a matrix inversion [7]. 

 In the present paper the elegant technique of McClellan and Parks for the analytical 

generation of independent nonorthogonal eigenvectors of F will be adopted. Next the 

Gram-Schmidt technique [10] will be applied to orthonormalize these eigenvectors. 

Finally the Hermite-like approximate eigenvectors will be projected on the last 

generated orthonormal eigensubspaces using the orthogonal procrustes algorithm [11] 

in order to get Hermite-like eigenvectors to be used as a basis for defining a DFRFT. 

This proposed technique has the advantage of avoiding the numerical evaluation of the 

eigenvectors of matrix S (which are also eigenvectors of F when the eigenvalues of S 

are simple). It also has the advantage of avoiding the difficulties that might arise when 

N is divisible by 4. 

 After introducing the FRFT in section 2, the McClellan-Parks eigendecomposition 

of matrix F will be explained and explicit expressions will be derived for the elements 

of the eigenvectors in section 3. The orthonormalization of the McClellan-Parks 
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eigenvectors, the generations of the Hermite-like approximate eigenvectors and the 

application of the orthogonal procrustes algorithm to get Hermit-like exact 

eigenvectors will be covered in section 4. The DFRFT will be defined in section 5 and 

some examples will be given in section 6. 

 

2. THE FRACTIONAL FOURIER TRANSFORM 

 

 The fractional Fourier transform (FRFT) is defined by means of the transformation 

kernel [3]: 
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where   is the angle of rotation. The transform  uX  of the signal x(t) is defined as: 

    




 dtutKtxuX ,)(  . (2) 

 For 0  one gets the identity operator and for  5.0  one gets the classical 

Fourier transform. The transform kernel has the following property: 

       uudtutKutK 




 ,, * . (3) 

 It means that the kernel functions  utK ,  taken as functions of t with parameter u 

form an orthonormal set. The inverse FRFT is given by: 

       




 dutuKuXtx , . (4) 

 The above formula can be viewed as a way of expressing x(t) on a basis formed by 

the orthonormal functions  tuK , . 

 The FRFT of the unit impulse  t  is given by (1) and (2) as: 
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 The above function is a chirp, i.e., a complex exponential with a phase that is 

quadratic in the transform variable u. 

 Let  tHn  be the normalized Hermite-Gaussian function of order n defined by: 

       25.0exp
!2

1
tth

n
tH n

n
n 


 (6) 

where )(thn  is the nth order Hermite polynomial defined by [12]: 
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with  b  being the largest integer not exceeding b. It can be proved that [3]: 

         uHjndtutKtH nn  




exp, . (8) 

 The above equation implies that the Hermite-Gaussian functions )(tHn  are the 

eigenfunctions of the FRFT operator with the corresponding eigenvalues of 

 jnexp . Interestingly the eigenfunctions are independent of the angle   although 

the eigenvalues are dependent on it. Consequently the eigenfunctions of the FRFT are 

the same as those of the classical Fourier transform (corresponding to  5.0 ). The 

latter has only the 4 distinct eigenvalues   3 2, 1, 0, k  , 
k

j . 

 

3. THE McCLELLAN-PARKS EIGENDECOMPOSITION OF MATRIX F 

 

 The discrete Fourier transform (DFT) of the sequence x[n], n = 0, …, N-1 is the 

sequence X[k], k = 0, …, N-1 defined by [8]: 

      1,,0 ,        
2

exp
1 1
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 The above relation can be compactly expressed as: 

  FxX   (10) 

where x and X are the column vectors: 

        TNxxxx 110    , (11) 

        TNXXXX 110   . (12) 
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 In this paper the superscripts T, *, + respectively denote the transpose, the complex 

conjugate and the complex conjugate transpose. 

 The elements of matrix F in (10) are given by: 

     NnmW
N

F nm
nm ,,1,,          

1 11
,    (13) 

where 

   NjW /2exp  . (14) 

 It is straightforward to show that matrix F is unitary, symmetric but not Hermitian. 

McClellan and Parks [8] proved that F has only the 4 distinct eigenvalues  j  , 1  and 

determined their multiplicities for any N as given by Table 1.  

 

Table 1. The multiplicities of the eigenvalues of matrix F. 

                    

N 

1 -j -1 j 

4m m+1 m m m-1 

4m+1 m+1 m m M 

4m+2 m+1 m m+1 M 

4m+3 m+1 m+1 m+1 M 

 

 Matrix F has a complete set of orthonormal eigenvectors because it is unitary [13]; 

however there is no known way for generating such a set analytically. McClellan and 

Parks contributed an analytical technique for generating a complete set of real linearly 

independent but nonorthogonal eigenvectors for matrix F. Those eigenvectors are 

expressed as rrr uFuz   for 1  and as rrr vjFvz   for j  where ru  and rv  

are simple column vectors to be given shortly. The values of the index r are given in 

Table 2 for all possible values of the order N of matrix F. The integer   appearing in 

that table is defined by: 

    15.0  N  . (15) 

 The simple N-dimensional column vectors ru  for  r1  are defined by: 
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Table 2. The McClellan-Parks eigenvectors of matrix F. 

N   1 -j -1 j 

Eigenvectors rr uFu   rr vv jF  rr uFu   rr vv jF  

4m R ,,,2,1 m  2,1,,1  m

 

m,,2,1   1,,2,1 m  

4m+1 R ,,,2,1 m  m,,2,1   m,,2,1   m,,2,1   

4m+2 R 1,,2,1 m

 

m,,2,1   1,,2,1 m  m,,2,1   

4m+3 R 1,,2,1 m

 

1,,,2,1 m  1,,2,1 m  m,,2,1   

 

 For 12  r , the elements   Nku
kr ,,1 ,   are all zero except for 

rNrk  2 ,  which are unities. The same applies to  
k

u  when N is odd. When N is 

even, all elements   Nku
k

,,1 ,   will be zero except for the element  
u  which 

will be unity. 

 On the other hand, the simple N-dimensional column vectors rv  for  Nr1  

are defined by: 
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All elements   Nk
k

,,1 , vr   are zero except   1v
1r 
r

 and   1v
1r 
 rN

. 

 In preparation for deriving explicit expressions for the elements of the McClellan-

Parks eigenvectors, one starts by defining the vectors: 

   rFux rr 1  ,           (18) 

   NrjFyr 1  ,        vr . (19) 

 From definition (13) of matrix F and definition (16) of vector 1u , one gets the 

elements of vectors 1x  as: 

    NkNx
k

,,1 ,          /11  . (20) 

 For 12  r , one gets: 
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 For the last vector x  in the set of (18) two cases arise depending on N being odd or 

even. For odd N, the elements of x  are also given by (21). For even N, vector u  has 

only one nonzero element, and consequently the elements of x  reduce to: 

           
even N ,      1 ,      1

111 115.011 Nk
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W
N
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 On the other hand, the elements of vector ry  of (19) can be derived as: 
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 By utilizing (20)-(23), one can derive explicit expressions for the elements of the 

McClellan-Parks eigenvectors of Table 2. Those expressions are given in Tables 3 and 

4 corresponding to the eigenvalues j  and 1  respectively. 

 

Table 3. The elements   N,1,k , 
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4. ORTHONORMAL HERMITE-LIKE EIGENVECTORS OF MATRIX F 

 

 The analytically generated nonorthogonal McClellan-Parks eigenvectors will be 

first orthonormalized by the Gram-Schmidt technique in order to get orthonormal basis 

for the 4 eigensubspaces corresponding to the 4 distinct eigenvalues of F. Next 

Hermite-like approximate eigenvectors will be generated. Finally Hermite-like exact 

eigenvectors will be obtained. 
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4.1 Orthonormalizing the McClellan-Parks Eigenvectors 

 

 Since matrix F is unitary, eigenvectors corresponding to distinct eigenvalues are 

orthogonal. Since F has only 4 distinct eigenvalues, the N-dimensional real space NR  

will be divided into 4 eigensubspaces kE  corresponding to the 4 distinct eigenvalues 

  3,2,1,0 ,  kj
k

k . The McClellan-Parks technique of last section generates real 

eigenvectors. For each eigenvalue k , the corresponding nonorthogonal eigenvectors 

span the eigensubspace  kE . Since eigenvectors lying in different spaces kE  are 

orthogonal, it remains to apply the Gram-Schmidt technique to the McClellan-Parks 

eigenvectors in each subspace kE  individually in order to get orthonormal 

eigenvectors. The resulting orthonormal eigenvectors of kE  will be arranged to form 

the columns of a matrix to be denoted by kV . 

 The approach of the present paper is distinct from that of [6] in generating the 4 

matrices 3,,0 , kVk  by first analytically generating the McClellan-Parks 

eigenvectors and second applying the Gram-Schmidt technique to the individual 

eigensubspaces. In [6], Pei et. al. utilized the result of Dickinson and Steiglitz [9] that 

the eigenvectors of F are the same as those of a special simple matrix S under certain 

assumptions. The approach of the present paper is less computationally demanding 

than that of [6] which necessitates the numerical evaluation of all eigenvectors of S. It 

has the merit of not needing to revert to a classification technique for assigning the 

eigenvectors of S to the 4 eigensubspaces of F. It has the extra merit of avoiding the 

difficulties that arise when S has a repeated eigenvalue. Actually in the latter case an 

ordinary eigenvector evaluation program will not generate the circularly even and odd 

eigenvectors corresponding to a double eigenvalue of S and one has to take into 

account some computational considerations in order to generate the right circularly 

symmetric eigenvectors of F [9]. 
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4.2 Generation of Hermite-Like Approximate Eigenvectors 

 

 Since one of the goals in developing a discrete fractional Fourier transform is to 

approximate the continuous fractional Fourier transform, one starts by generating 

samples of the Hermite-Gaussian functions )(tHn  of (6) which are the eigenfunctions 

of the FRFT. More specifically, one starts by generating the samples: 

       NkNkhk nn /exp/2 2   . (24) 

 Next a sequence ][kn  is defined in the range [0, N-1] by shifting the sample  kn  

in the following way: 

   
   
   









1-Nk 5.0for           

15.00for                 

NNk

Nkk
k

n

n

n 


  (25) 

where  b  is the smallest integer larger than or equal to b. The discrete Fourier 

transform (DFT) of the sequence ][kn  is defined by: 

         1,,0 ,          /2exp
1 1

0

 




NmNkmjk
N

kDFT
N

k
nn  . (26) 

 The following approximate formula has been recently derived [6,7]: 

         1,,0 ,          
n

 NmmjkDFT nn  . (27) 

 The above formula implies that the sequence 10 , ][  ,N,kkn  is an approximate 

eigensequence of the DFT operator with a corresponding eigenvalue  nj . The 

approximation error grows with the order n of the Hermite-Gaussian function 

)(tHn [6]. 

 Define the N-dimensional vector nw  as: 

        Tnnnn Nw 110     (28) 

and the normalized vector nu  as: 

  nnn wwu / . (29) 

 Following the matrix representation (10) of the DFT operator, Eqs. (27)-(29) imply 

that: 

    n

n

n ujFu   . (30) 
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 The above formula indicates that nu  is an approximate eigenvector of matrix F with 

the corresponding eigenvalue  nj . This holds for any nonnegative integer n since 

the Hermite polynomials and the Hermite-Gaussian functions are defined for all 

nonnegative integers n. Fortunately the eigenvalues have emerged exactly since matrix 

F has only the 4 distinct eigenvalues   3,,0 ,  kj
k

 as it was proved in [8]. Since 

the unitary matrix F of order N has only N linearly independent eigenvectors, one 

should select a set of indices  Nnnn ,,, 21   so that the corresponding vectors 

Nku
kn ,,1 ,   will be adopted as the approximate Hermite-like eigenvectors of F. 

Those indices should be selected such that the eigenvalues   Nkj kn
,,1 ,   will 

satisfy the multiplicities requirement of Table 1. Moreover, those indices should be as 

small as possible in order to reduce the approximation error as explained before. 

Therefore the set  should be selected as given in Table 5 suggested in [6]. A careful 

examination of this table reveals that for odd N, the set  is  1,,1,0 N ; and for 

even N, the set  is  NN ,2,,1,0  . 

 

Table 5. The set of the indices  Nnnn ,,, 21  . 

N Nnnn ,,, 21   

4m   mm 4,24,,2,1,0   

4m+1   mm 4,14,,2,1,0   

4m+2  24,4,,2,1,0 mm  

4m+3    24,14,,2,1,0  mm  

 

 The Hermite-like approximate eigenvectors Nku
kn ,,1 ,   will be classified into 4 

sets corresponding to the 4 distinct eigenvalues   3,,0 ,  kj
k

k  of F. The 

vectors corresponding to k  will form the columns of a matrix to be denoted by kU . 
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4.3 Hermite-Like Orthonormal Exact Eigenvectors 

 

 The columns of matrix kV  introduced in Sec 4.1 are orthonormal eigenvectors of F 

that span the eigensubspace corresponding to the eigenvalue  kj . However those 

eigenvectors are not Hermite-like and consequently a DFRFT based on them will not 

be a good approximation for the FRFT. On the other hand, although the columns of 

matrix kU  defined in Sec 4.2 are Hermite-like, they are approximate rather than exact 

eigenvectors of F. Therefore one should search for eigenvectors of F that are as close 

as possible to the Hermite-like approximate eigenvectors. One is naturally led to using 

the orthogonal procrustes algorithm [11] to be explained next. 

 Let kÛ  be the matrix of eigenvectors of F corresponding to the eigenvalue  kj  

that is as close as possible to matrix kU . The matrix kÛ  will be expressed as: 

  kkk QVU ˆ  (31) 

where kQ  is a unitary matrix. Since the columns of kÛ  are linear combinations of 

those of kV , they are exact eigenvectors corresponding to the same eigenvalue  kj . 

Moreover they are orthonormal because the columns of kV  are orthonormal and matrix 

kQ  is unitary. In order for them to be as close as possible to the Hermite-like columns 

of kU , one should minimize the Frobenius norm: 

  
Fkkk

F
kkk QVUUUJ  ˆ  . (32) 

 The unitary matrix kQ , which minimizes the above criterion, has been obtained as 

follows [11]: 

a)  Form the square matrix kC : 

  kkk UVC    (33) 

b)  Obtain the singular value decomposition of kC : 

   kkkk BAC  (34) 

c)  Compute matrix kQ : 

   kkk BAQ  . (35) 
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 One should mention that although the orthogonal procrustes algorithm was 

employed in [6], it was erroneously applied since kÛ  was wrongly taken as kkk VQU ˆ  

rather than as kkk QVU ˆ . 

 Upon assessing the computational complexity one notices that the method of the 

present paper requires the application of the Gram-Schmidt method once and the 

singular value decomposition four times. This is to be compared with the method of 

Pei et. al. [7] which requires the application of both the QR decomposition technique 

and matrix inversion N times. 

 

5. A DISCRETE FRACTIONAL FOURIER TRANSFORM 

 

 The Hermite-like orthonormal eigenvectors of matrix F obtained in Section 4 will 

be arranged to form the unitary matrix Û  of order N as follows: 

   
Nnnn uuuU ˆˆˆˆ

21
  (36) 

where the exact eigenvector nû  corresponds to the approximate eigenvector nu  of (30). 

The set of indices  Nnn ,,1   is given in Table 5. Consequently matrix F has the 

following eigendecomposition: 

   UDUF ˆˆ  (37) 

where D is a diagonal matrix defined by its diagonal elements as: 

      Nnn
jjdiagD  ,,1  . (38) 

 The transform kernel of the discrete fractional Fourier transform (DFRFT) is 

defined by [6]: 

   UDUF ˆˆ
22





  (39) 

where the diagonal matrix 




2

D  is defined by: 

      NnjnjdiagD 


  exp,,exp 1

2

 . (40) 

 When the angle of rotation  5.0 , the transform kernel of (39) reduces to matrix 

F of the DFT. On the other hand when 0 , the kernel reduces to the identity matrix. 
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 Let the column vector x represent the time-domain signal as defined in (11). The 

discrete fractional Fourier transform X  of x is defined by: 

  xFX





2

  . (41) 

 Combining (41) and (39), one obtains: 

   



N

k
nkk k

uanjaDUX
1

2

ˆexpˆ 



  (42) 

where 

   TNaaxUa 1
ˆ    . (43) 

 One notices that matrix Û  and vector a are independent of the angle of rotation   

and consequently they are computed only once. 

 

6. EXAMPLES 

 

 The DFRFT of the discrete-time impulse ][n  is computed using N = 35 and for 

 0.5 and 0.49π , 0.475π , 1 radians. The results are shown in Fig. 1 where the solid 

line represents the real part and the dashed line represents the imaginary part and 

where the horizontal axis represents the discrete time index (n). For  5.0  the 

DFRFT reduces to the classical discrete Fourier transform (DFT) and from (9) one 

finds that the DFT of ][n  is simply NkX /1][   in agreement with Fig. 1(d). 

Actually as   approaches 5.0 , the DFRFT approaches the DFT as can be seen from 

Figs. 1(b,c,d). 

 Since the DFRFT has been developed with the objective of approximating its 

continuous counterpart, it is appropriate to plot the FRFT of the continuous-time 

impulse )(t  given by (5) for the same values of   of Fig. 1. When  5.0 , the 

FRFT reduces to the classical Fourier transform and consequently the FRFT of )(t  

will be 2/1  as can be seen from (5). For the sake of comparison, the FRFT will be 

scaled by the factor N/2  so that it will coincide with the DFRFT when  5.0  

and the signal is the unit impulse. Fig. 2 is the continuous counterpart of Fig. 1 where 
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the frequency variable u in (5) has been sampled with an increment of N/2 . As   

approaches the value 5.0 , the scaled FRFT approaches the real constant value N/1 . 

The similarity between Figs. 1 and 2 demonstrates clearly that the DFRFT 

approximates the continuous FRFT. 
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Fig. 1. The DFRFT of a discrete-time impulse. 
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Fig. 2. The (scaled) FRFT of a continuous-time impulse. 

 

7. CONCLUSION 

 

 A version of the discrete fractional Fourier transform (DFRFT) has been developed 

to approximate its continuous counterpart, namely the fractional Fourier transform 

(FRFT). A major part of the work has been the eigendecomposition of the discrete 

Fourier transform (DFT) matrix F. In previous work, orthonormal eigenvectors of F 

were obtained by applying the numerical eigendecomposition techniques to a special 

matrix S having the same eigenvectors as matrix F under certain assumptions. In the 

present paper, nonorthogonal  eigenvectors have been first generated by the 

McClellan-Parks method after deriving explicit expressions for the elements of those 

eigenvectors. Second the Gram-Schmidt technique has been applied to orthonormalize 

the eigenvectors in each eigensubspace individually since eigenvectors corresponding 

to distinct eigenvalues are orthogonal by the unitarity of matrix F. In order to 

approximate the continuous FRFT, Hermite-like approximate eigenvectors are 
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obtained by sampling the Hermite-Gaussian eigenfunctions of the continuous Fourier 

transform. Finally exact orthonormal eigenvectors as close as possible to the Hermite-

like approximate eigenvectors are obtained by the orthogonal procrustes algorithm.  
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 تحويل فورير الكسرى المتقطع المبنى على المتجهات الذاتية لمكللان وبارك
 

ت ويدددددددددددد  تددددددددددددوهيه   دددددددددددده   ت  دددددددددددد  يت يدددددددددددد     دددددددددددد   إ دددددددددددد   وصددددددددددددو   إ دددددددددددد يهدددددددددددد       دددددددددددد  
ت هيدددددددددف  ت ويددددددددد  تدددددددددوهيه     ددددددددده      دددددددددت ه  وي  ددددددددد    ت  يددددددددد    ددددددددد  ت    صددددددددد وت  ت ويددددددددد  تدددددددددوهيه 

   تمهددددددددددددير     تيدددددددددددد   يدددددددددددده   ولا تدددددددددددد  تو يدددددددددددد تدددددددددددد ،   ت  دددددددددددد    مدددددددددددد     ه ي دددددددددددد   دددددددددددد   دددددددددددد       دددددددددددد 
   تعي ددددددددد و     دددددددددل  و ددددددددديهش   هي ددددددددد  ت  ي يددددددددد  و  دددددددددش  عددددددددد    دددددددددت ي  تع يددددددددده ر صدددددددددهي    ع يصددددددددده 

 ددددددددد ير    صدددددددددو    ددددددددد   تمهدددددددددير   تيددددددددد  - ي يدددددددددي تددددددددد  ت  يددددددددد   هي ددددددددد  مددددددددده  و  ، ددددددددد ت    تمهدددددددددير
 ي  ددددددددي تددددددددد  تو يدددددددد   تمهددددددددير   تيدددددددد  ت هي يددددددددد  و  ، تعي دددددددد و تدددددددد   دددددددد  تدددددددده     تددددددددد  م  دددددددد    دددددددد   دددددددد و

أخيددددددددده  تددددددددد     صدددددددددو    ددددددددد   تمهدددددددددير   تيددددددددد   تعي ددددددددد و   ي ددددددددد  و هي ددددددددد   ددددددددد  و يدددددددددر ت ددددددددد    و    ه 
   تمهددددددددددددير     تيدددددددددددد    ت هي يدددددددددددد     دددددددددددد يه   دددددددددددد و    ه يددددددددددددر و  ددددددددددددش  ي ددددددددددددتخ    أ دددددددددددد وف   توتيدددددددددددد  

     ه     تعي   


